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Abstract

Film boiling on horizontal periodic surfaces is investigated by direct numerical simulations. A front tracking/finite

difference technique is used to solve the momentum and the energy equations in both phases and to account for inertia,

viscosity, and surface deformation. Effect of the unit cell size W on the interface dynamics, heat transfer, and fluid flow

is studied for different wall superheats. The simulations are carried out over sufficiently long times to capture several

bubble release cycles and to evaluate the quasi steady-state Nusselt number hNui. While instantaneous Nusselt number

will change as result of a change in the system size, statistically steady-state Nusselt number remains almost the same.

Simulations of two-dimensional systems in large unit cells, 5kd2 <W < 10kd2, show a distribution of bubble spacing in

the range of 0.61kd2–1.46kd2. At relatively low superheats (Ja 6 0.064) the bubbles are released periodically from the

vapor film, but at intermediate superheats (0.064 < Ja < 2.13) permanent vapor jets are formed with no bubble break

off. At sufficiently high superheats, the vapor jets start to interact. It is shown that the average bubble spacing does not

change with changes in the wall superheat.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In part I of this study [1], we presented a front track-

ing/finite difference technique for direct numerical simu-

lations of boiling flows. There, the mathematical

formulation of the method was presented, the numerical

technique was discussed, and the method was validated

by comparing our results with the solutions of a few

analytical problems and a grid refinement study for film

boiling.

Here, we are interested in film boiling on horizontal

surfaces where a thin vapor layer covers a heated plate
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and phase change takes place at the liquid/vapor inter-

face. Although nucleate boiling is usually the more desir-

able mode of boiling, film boiling continues to be the

focus of many boiling studies because it is frequently

encountered in industrial applications. In the cryogenic

industry, for example, cryogenic fluids are apt to under-

go film boiling due to their low boiling points. Other

applications include spray cooling of highly heated sur-

faces, such as those in steel mills, where due to the large

superheat film boiling rather than nucleate boiling is

dominant.

The individual parameters that govern film boiling

are the thermophysical properties of the liquid and

the vapor; qi, li, ki ci; i = l, v; the buoyancy force

(ql � qv)g, the wall superheat DT = Tw � Tsat (or,

the wall heat flux qw), the surface tension r and
ed.
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Nomenclature

A Atwood number (also area),
ðql�qvÞ
ðqlþqvÞ

Nu instantaneous Nusselt number

hNui space-averaged Nusselt number

hNui time- and space-averaged Nusselt number

Gr the Grashof number,
qvðql�qvÞgl3s

l2
v

Ja the Jacob number,
cvðTw�T satÞ

hfg

Pr the Prandtl number,
lvcv
kv

Re the Reynolds number

h enthalpy (also convection heat transfer

coefficient)

k thermal conductivity

�n unit normal to the interface (pointing

toward the vapor)

T temperature

t time

�u velocity

Greek symbols

k wavelength

j curvature

l dynamic viscosity

m kinematic viscosity

q density

r surface tension

s bubble release period

Subscripts

d most unstable

d2 most unstable two-dimensional

d3 most unstable three-dimensional

l liquid

v vapor

fg (vapor–liquid)

sat saturation

c critical

w wall

o operational condition

o,c operational condition and based on the crit-

ical wavelength

o,d2 operational condition and based on the

most unstable wavelength

B Berenson

K Klimenko

Superscript


 nondimensional
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the latent heat of evaporation hfg. Nondimensionali-

zation of these parameters leads to Gr ¼ qvgðql�
qvÞl3s=l2

v, Ja = cvDT/hfg (or, Ja = qw/qgushfg), Pr =

lvcv/kv, and the ratio of material properties qv/ql,
lv/ll, cv/cl, and kv/kl as the governing nondimen-

sional parameters. Here, Gr, Pr, and Ja are the Gra-

shof number, the Prandtl number, and the Jacob

number. ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðql � qvÞg

p
is a capillary length

which is used as a characteristic length. Similarly,

us ¼
ffiffiffiffiffiffi
lsg

p
and ts ¼

ffiffiffiffiffiffiffiffiffi
ls=g

p
are characteristic velocity

and time, respectively. Notice that the two-dimen-

sional critical and the most unstable Taylor inviscid

wavelength are related to ls through kc = 2pls and

kd2 ¼ 2p
ffiffiffi
3

p
ls. The Nusselt number is the most

important dependent parameter and is defined as

Nu = �(ls/DT)oT/oyjw or Nu = lsqw/kvDT, depending

on whether the wall superheat or heat flux is con-

trolled, respectively.

Two of the most widely used correlations for the heat

transfer coefficient in film boiling on horizontal surfaces

are those due to Berenson [3] and Klimenko and Kli-

menko and Shelepen [4,5]. Berenson�s analysis was based
on Zuber�s model [2] who proposed that the interface be-

haves as a Taylor wave of wavelength kc 6 k 6 kd2. Ber-
enson assumed that hydrodynamic instability results in

breakup of the waves in a regular pattern with the dis-

tance between the bubbles being equivalent to the most
unstable wavelength kd2. He further assumed that a

vapor film of uniform thickness connects the vapor do-

mes and that the vapor generated at the interface flows

slowly toward the domes. Thus, he was able to derive

a correlation for laminar film boiling near minimum

heat flux which in nondimensional form reads

NuB ¼ 0:425ðGrPr=JaÞ1=4: ð1Þ

Klimenko derived a correlation for both laminar

(Gr 6 4.03 · 105) and turbulent (Gr > 4.03 · 105) regime

using Reynolds analogy and assuming the same cell pat-

tern. Klimenko�s correlation is

NuK ¼ CGrnPrmfK ð2Þ

where C = 0.19, n = 1/3, m = 1/3, and fK = fl for laminar

flow and C = 0.0216, n = 1/2, m = 1/3, and fK = ft for

turbulent flow. fK is given by

fl ¼
0:89Ja�1=3; Ja < 0:71

1; Ja P 0:71

(
;

f t ¼
0:71Ja�1=2; Ja < 0:50

1; Ja P 0:50

(
Klimenko�s correlation is believed to correlate most

experimental data with an accuracy of ±25% [5].
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The main purposes of the current investigation is to

shed some light on multimode film boiling where the

evolution of the phase boundary leads to formation of

bubbles of different sizes and spacings. This can happen

if the surface size W is sufficiently large compared with

kd to allow small scale random protrusions at the phase

boundary (which are present in practical applications) to

grow. We are motivated by the fact that heat removal

from a surface is dependent on the bubble generation

rate and, therefore, competition between these waves is

likely to lead to results different than those due to the

evolution of a single-wave. We are interested in a quasi

statistically steady-state, after the initial transient, when

the Nusselt number has converged to—or fluctuates

around—a fixed value, but before all the liquid evapo-

rates. For this problem, Experimental photographs of

film boiling on horizontal cylinders and wires can be

found in, for example, Lienhard and co-workers [9,10]

and Abadzic and Goldstein [14], and a graphical sketch

of bubble sites is included in Hosler and Westwater [6]

for film boiling on a horizontal plate. We also address

the effect of the wall superheat on the results as this

parameter is an important controlling factor in indus-

trial applications.
2. Choice of fluid and wall superheat

In film boiling of common liquids, the vapor film is

usually very thin. If a uniform grid is chosen to accu-

rately resolve the film, the computational cost will be

very high and in some cases may be prohibitive. One

way to get around this problem is to use a subgrid model

where the computational domain is divided into a micro

(inside the film) and a macro region (outside the film).

While the original governing equations are solved in

the macro region using a relatively coarse grid, simpli-

fied equations (i.e., boundary layer type) are used in

the micro region. Son et al. [15], for example, used this

approach to study nucleate boiling with a microlayer.

Another approach is to use a nonuniform grid where

the grid points are clustered inside the film but a rela-
Table 1

Properties of water at psat = 169 bar

Tsat c/hfg Pr Gr

625K 0.02K�1 4.2 36 · 104

Table 2

Length scales, time scale, and velocity scale used in this study

ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=Dqg

p
kc = 2pls kd2 ¼ 2p

ffiffiffi
3

p
l

0.2571 1.6154 2.798
tively coarse grid is used outside the film. For this study

we implemented the latter [1]. Although this enabled us

to resolve thin films, the computations cost was still high

because the size of the time step Dt is determined by the

size of the smallest grid block and also because the iter-

ative procedure used to solve the pressure equation (i.e.,

Eq. (23) in [1]) convergences slower when a nonuniform

grid is used. While we carry out a few calculations using

the nonuniform grid in this paper, we use uniform grids

for most of our calculations, facilitating simulations that

must be carried out in large domains and for long times.

This is accomplished by using a relatively viscous fluid

which results in a thicker film. Thus, the thermophysical

properties used in this study are chosen close to those of

saturated water at psat = 169 bar (Table 1), except for the

Grashof number which is Gr = 17.85 in most of our

simulations. The lower Grashof number implies a more

viscous fluid or an acceleration higher than the normal

gravitational acceleration (such as that in a rocket en-

gine). We shall address the effect of Gr on our results

in Section 3.5. The length scale, velocity scale, and time

scale associated with this choice of fluid are listed in

Table 2.

Once the fluid is selected and the the gravitational

acceleration is fixed, the wall heat flux, or the wall tem-

perature, is the only free parameter. For a given system

pressure, film boiling can be sustained only if the wall

heat flux or temperature is above the Leidenfrost point.

The minimum heat flux for film boiling on a heated hor-

izontal surface was first determined by Zuber [2] using

hydrodynamic considerations. Later, Berenson [3] mod-

ified Zuber�s theory by refining some of his assumptions

and determining the bubble growth rate from experi-

mental data. Both methodologies, however, resulted in

the same expression for the minimum heat flux;fq00min ¼ CA1=2, with the only difference being a slightly

different value for the lead coefficient; C = p/24 in

Zuber�s compared with C = 0.09 in Berenson�s. Here,fq00min ¼ q00min=qvushfg is a nondimensional heat flux and

A = (ql � qv)/(ql + qv) is the Atwood number. Berenson

also derived a correlation for the minimum wall

superheat using the heat convection equation;
qv/ql lv/ll kv/kl cv/cl

0.209 0.3857 0.281 1.726

s ts ¼
ffiffiffiffiffiffiffiffiffi
ls=g

p
us ¼

ffiffiffiffiffiffi
lsg

p

0.3585 0.717
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DTmin ¼ q00min=hmin, hmin being the heat convection coeffi-

cient near the minimum heat flux (i.e., hmin = NuBkv/ls).

His correlation in nondimensional form yields

Jamin ¼ 0:127ðA2Re4Pr3=GrÞ1=3; ð3Þ

where Jamin = cvDTmin/hfg is the Jacob number below

which film boiling changes to transition boiling and

Re = usls/mv is a Reynolds number based on the charac-

teristic length and velocity scales.

The agreement of the above correlation with experi-

mental results is mixed. While Eq. (3) resulted in a

±10% error for Berenson�s own experiments with n-pen-

tane and carbon tetrachloride, the experiments by Hos-

ler and Westwater [6] with water at atmospheric pressure

showed that this equation underpredicted their data by

more than 50%. On the other hand, Dhir et al. [7] ob-

served in their pseudo-film boiling studies (by sublima-

tion of a dry ice beneath a pool of warm water) that

DTmin by Berenson�s prediction was about two times lar-

ger than that of their experimental result. They attrib-

uted this difference to the overprediction of the lead

coefficient in Eq. (1) as a result of assuming that bubble

would be generated both at the node and the antinode,

since they observed that bubbles were generated only

at the nodes.

In our simulation, we fix the wall temperature rather

than the wall heat flux. Thus, Eq. (3) predicts

Jamin = 0.4375 for our set of parameters. We believe

that this is an overprediction as we were able to run

film boiling simulations at Jacob numbers as low as

Ja = 0.0213 where evaporation was still sufficiently fast

to prevent wetting. While we are interested in examin-

ing as broad range of wall superheat as possible, there

are restrictions at both high and low values that need to

be addressed. Lower superheats result in a thin vapor

film that demands very high grid resolutions. At higher

superheats (i.e., DT P 400K), on the other hand, radi-

ation effects become important and must be taken into

account. To avoid resolving extremely thin films and

taking the radiation effects into consideration, we have

elected to work with Jacob numbers in the range

0.064 6 Ja 6 2.132.
3. Results

3.1. Film boiling in small unit cells

Models of film boiling are generally based on the

assumption that regularly spaced bubbles are gener-

ated from linearly the most unstable wavelength.

Around the maximum growth rate, the growth versus

wave number curve is, however, relatively flat. In

multimode boiling it is therefore likely that waves of

slightly different wave numbers grow also. To examine
how waves of different length evolve and what the ef-

fect of the wavelength is on the heat transfer and the

evaporation rate, we have run two fully three-dimen-

sional simulations with Ja = 0.064. In one case we se-

lect W = kd3 and in the other we take W = 1.4kd3. The
initially flat phase boundary is perturbed in the follow-

ing way:

z ¼ zc þ �x½cosð2pNxx=W xÞ þ sinðpNxx=W xÞ
þ �y ½cosð2pNyy=W yÞ þ sinðpNyy=W yÞ:

For W = kd3, we take zc = 0.125kd3, Wx =Wy = kd3,
�x = 0.018kd3, �y = 0.036kd3, and Nx = Ny = 2. For

W = 1.4kd3, we increase Wx, Wy, zc, �x, and �y by factor

of 1.4 but use the same Nx and Ny. These initial pertur-

bations consist of two bimodal waves in the x and the y

direction. The superposition of these waves results in

four unequal humps at the interface. The center of these

humps, in a descending order of their heights, are at

(Wx,Wy), (0,Wy), (Wx, 0), and (0,0). Fig. 1a shows the

initial phase boundary and the late amplitude stage for

W = kd3, after the initial perturbation has grown and

bubbles have been formed. Fig. 1b shows an intermedi-

ate stage and the late amplitude stage for W = 1.4kd3. In
the first case, the long wave perturbation leads to com-

petition between the waves and only two bubbles are

formed. Since the initial growth rate of each hump is

proportional to its height, the bubbles that eventually

appear are formed from the highest humps. In the sec-

ond case, where the primary wave is longer than the

most unstable wave, all four humps grow to form

bubbles.

To find out how the interface evolution influences the

heat flux, in Fig. 2 we compare space-averaged Nusselt

number, defined as hNui = �ls/(ADT)�AoT/oyjwdA, for

these simulation and the single-mode simulation in [1]

which was run in a kd3 · kd3 · 2kd3 domain and at the

same nondimensional numbers. We also include the re-

sults of two simulations for two-dimensional systems

(which are counterpart of the simulations in Fig. 1) for

comparison. Here, A is the surface area. hNui is initially
high because of the large temperature difference between

the wall and the vapor. This is, however, an artifact of

the initial temperature condition and will not have any

effect on the quasi-steady results. Son and Dhir [11],

for example, set their initial vapor temperature field

using a saturation temperature, a linear profile, and a

temperature profile from a steady-state result of a simu-

lation with a coarser grid and found essentially no effect

on the time-averaged Nusselt number. The Nusselt num-

ber, after decreasing initially, increases again as a bubble

is formed and when the film thickness is minimum. hNui
is the same for all the curves up to t = 1.39 but starts to

deviate as a result of differences in evolution of the phase

boundaries. The Nusselt numbers predicted by Beren-

son�s and Klimenko�s correlations are also included in



Fig. 1. Evolution of a liquid/vapor interface due to bimodal initial perturbations at Ja = 0.064. Except for Gr = 17.85, the

nondimensional numbers are the same as those listed in Table 1. For the top frames, the domain size is kd3 · kd3 · 2kd3, the grid

resolution is 96 · 96 · 192 grid, and times are 0 and 13.94. For the bottom frames, the domain size is 1.4kd3 · 1.4kd3 · 1.4kd3, the grid
resolution is 128 · 128 · 128 grid, and times are 6.97, 14.64.
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the figure and are in the same range as the numerical

results.
3.2. Film boiling in large unit cells

To fully address the effect of allowing many modes to

interact freely it is necessary to follow the evolution of a

significantly larger number of modes. Due to the expense

of doing so for a fully three-dimensional flow, we have

elected to continue the studies by simulations of two-

dimensional systems. The good agreement between

experimentally observed heat transfer rates and predic-

tions for two-dimensional systems, shown later, suggests
that these simulations capture much of the dynamics.

There are of course some differences between the two

systems as can be seen by inspection of Fig. 2.

We start our analysis by investigating the evolution

of a phase boundary in a W = 10kd2 unit cell. The do-

main height is 2kd2 and the grid resolution is

1280 · 256 points. The interface is initially perturbed

by N = 30 random waves described by

y ¼ y0 þ �=N
XN
i¼1

rðiÞ½cosð2pix=W Þ þ sinð2pix=W Þ;

where, y0 = 0.125kd2, � = �0.05kd2, and 0 6 r(i) 6 1 is a

number determined by a random number generator.



Fig. 2. Evolution of hNui for a single-mode and bimodal

simulations of two- and three-dimensional systems.
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We also include another vapor layer on top of the liquid

layer to allow rising bubbles to break through. The posi-

tion of the second interface is at 1.25kd2. All the nondi-

mensional numbers for this run are the same as those of

the previous simulations. The exact mechanism of bub-

ble break off is still being actively investigated, but in

our code, we allow the topology to change simply when-

ever the diameter of the thread connecting the bubble to

the base is smaller than two grid spacings. Although

changing this criteria may affect the shape of the phase

boundary slightly, we have found that the overall statis-

tical results remain essentially the same.

Fig. 3 shows the evolution of the phase boundary.

The first frame shows the initial position and the subse-

quent frames show the interface at selected times noted

in the caption. Initially, short wave perturbations are

stabilized by surface tension but larger ones are not af-

fected. The interactions between the larger perturbation

results in a distribution of waves of different amplitudes

as seen in the second frame. As time progresses, the

interface becomes more unstable and vapor bulges are

formed around the peaks of these waves (frame 3).

These bulges are at different stages of growth depending

on the their amplitude at time zero. For instance, in the

third frame we observe a bubble break off at the fifth

and the last sites while the bubble at the fourth site is

still in the formation stage. We observe ten bubbles dis-

tributed in a width of 10kd2 which indicates an average

of one bubble per kd2, just as was the case for the single
mode simulation. However, the peak to peak distances

is in the range of 0.81kd2–1.31kd2. Frames 4–6 show the

formation of three steady jets and some alternate bub-

ble generation at the nodes and antinodes. For exam-

ple, the bubble generation site marked in the last

frame has no counterpart in the fifth frame. However,

this is not a dominant feature of this run and an anima-
tion of the results showed that most of the bubble gen-

eration sites remain the same during the quasi steady-

state. A plot of the Nusselt number versus time (i.e.,

Fig. 4) showed that the quasi steady-state was reached

at around t = 50–60. Thus, the first five frames are rep-

resentative of the transient evolution while the last

frame represents the phase boundary at the quasi

steady-state. Comparison of the size of the bubbles in

the last frame with those at the earlier times show that

the bubbles in the quasi steady-state are smaller than

those during the first instant of bubble break off. This

is due to the decrease in the average heat flux after

the system reaches a steady-state. The bubbles deform

after they rise and at the time of coalescence with the

top surface they look like ellipses with ratio of minor

to major axes in the range 0.18–0.5. Inspection of the

sixth frame shows that the bubble spacing at quasi

steady-state is in the range of 0.58kd2–1.43kd2. This

spacing was measured by marking the permanent jets,

active sites, and the sites that most recently released

bubbles. Here, the average bubble spacing is 0.913kd2
which shows that for sufficiently large domains, the

dominant bubble spacing is less than the most unstable

wavelength. This is in-line with the observations for

three-dimensional systems (Fig. 1) where two bubbles

were formed per 1.4kd3 length.

To find out how the number of initial perturbation

modes affects the result, we have performed three more

simulations in the same domain but with N = 2, 5, and

60 random modes. Comparison of the phase boundaries

for these runs in quasi steady-state showed a similar

average bubble spacing. In the first run, it took a long

time for the instability to set in and the bubble release

pattern was more irregular. In the second run, the insta-

bility set in relatively quickly. In the third run, the small

scale perturbations were stabilized very fast and the

interface evolution was similar to the original run. Fig.

4 compares hNui for these runs as well as hNui for the

N = 30 run seen in Fig. 3. Although the instantaneous

Nusselt numbers are different, time-averaged Nusselt

numbers, defined as hNui ¼ 1=ðDtÞ
R te
ti
hNuidt are very

close; hNui = 2.0350, 2.0037, 2.1483, 2.0966 for N = 2,

5, 30, and 60, respectively. Here, Dt = te � ti, where ti
and te are the beginning time of the steady-state and

the end-time of the simulation, respectively. The peaks

and the valleys in the figure correspond to the times right

before bubbles depart (when the average film thickness

is minimum) and the times when the average film thick-

ness is relatively high. Once a bubble is released, surface

tension pulls the interface back and the process repeats

itself. It should be noted that if the wall heat flux qw is

imposed rather than the wall temperature, the wall tem-

perature goes through a similar oscillation. In that

case, a Nusselt number defined as hNui ¼ ðlsqw=
kvW Þ

R W
0
dx=ðT w � T satÞ will be minimum when the aver-

age film thickness is maximum and vice versa, reflecting



Fig. 3. Evolution of a multimode phase boundary. The initial interface consists of N = 30 random waves in a 10kd2 · 2kd2 domain. The

grid resolution is 1280 · 256. Here, Ja = 0.064 and except for Gr = 17.85, the nondimensional numbers are the same as the

corresponding ones in Table 1. The frames proceed from the top to the bottom and times are 0, 13.94, 27.89, 41.84, 55.78, and 137.37.
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the fact that Tw increases with increase in the average film

thickness to compensate for the higher thermal resistance.

The results of a handful of experimental measure-

ments of the bubble spacing are mixed. For example,
a photograph by Lienhard and Dhir [9] of film boiling

of water form a horizontal wire, shows a uniform bub-

ble spacing of kd2, while a two-dimensional sketch

of bubbles by Hosler and Westwater [6] shows a



Fig. 4. Comparison of the Nusselt number for multimode

simulations with different number of initial waves. The domain

size is 10kd2 · 2kd2 and the grid resolution is 1280 · 256.

Fig. 5. Nusselt number for different unit cell sizes as a function

of time.
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distribution of bubble spacings with average spacing

larger than kc but very close to kd2. Apart from these

experimental measurements, the only relevant investiga-

tion that we are aware of is a numerical/analytical study

of thin viscous films by Yiantsiso and Higgins [12].

Although phase change was not included in this study,

their observations lend some support to our findings in

the sense that it shows possibility of having a distribu-

tion of bubble spacing. To study the long-time behavior

of the phase boundary, they found an asymptotic solu-

tion for the creeping flow equation in the liquid and

lubrication equation in the film. They showed that the

interface would approach a sinusoidal wave (i.e., bub-

ble) of length k̂d2 ¼
ffiffiffiffiffiffiffiffi
2=3

p
kd2 at a steady-state, while

the film thickness between the bubbles became zero.

An infinite spectrum of periodic steady-state interfacial

shapes was found to be possible. An energy analysis re-

vealed that a state of one bubble per k̂d2 was the most

energetically favorable. However, the numerical simula-

tions (conducted for two-dimensional systems) indi-

cated that this state may not always be reached.

Rather, the number of bubbles formed was determined

by the fastest growing mode, while their relative size de-

pended on the initial conditions. The net result of their

analysis was that for a periodic domain of size W, if

nk̂d2 < W < ðnþ 1Þk̂d2, where n is an integer, one could

have any number of bubbles between 1 and n with arbi-

trary heights and spacing, provided of course the total

area (volume in three dimensions) was conserved. For

the simulations in Fig. 4 W = 10kd2 and their analysis

predicts formation of one to 12 bubbles. It should be

noted that for these simulations the number of bubbles

during the transient was always around 10. However,

the number of bubbles at quasi steady-state was

different.
3.3. Effect of the unit cell size

To evaluate the dependency of our results on the size

of the unit cell, we have performed three more simula-

tions in smaller, W = kd2 and W = 2kd2 domains, and a

larger, W = 20kd2 domain. The height of the computa-

tional domain was 2kd2 in all cases. The grid resolution

for the small domains was 128 per kd2 and for the large

domain it was 64 points per kd2. The interface for

W = kd2 and W = 2 kd2 was perturbed by a single and

a two waves, respectively. The interface for the larger

simulations was perturbed similarly to that in Fig. 3.

For the first case, the bubbles were always released at

the site with the maximum initial amplitude. For the sec-

ond case, the bubbles were released alternately at each

site. For the third case, wave interactions led to a similar

interface evolution as that seen in Fig. 3, but no perma-

nent vapor jet was formed due to a lower grid resolution.

Fig. 5 compares the instantaneous Nusselt number for

these runs. In all cases, after a short period, the Nusselt

number starts to oscillate as the systems reach a quasi

steady-state. The period and amplitude, however, are

more irregular for the multimode simulations due to a

more random bubble release. The phase differences be-

tween the curves indicates the differences in the bubble

release period. Although we believe that the simulations

have passed well beyond the transient stage, animations

of the results showed that the release times of the bub-

bles are strongly correlated, resulting in the oscillations

seen in the figure.

In Fig. 6a we plot hNui versus eW ¼ W =kd2 where it is

seen that hNui does not vary much with eW . This is a

good news from a computational point of view, since

the Nusselt number computed for a small unit cell

may be readily applicable to larger systems used in the



Fig. 6. Quasi steady-state (a) Nusselt number and (b) bubble

release period as a function of the unit cell size. Here, Ja = 0.064

and except for Gr = 17.85, the nondimensional numbers are the

same as the corresponding ones in Table 1.
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industry. This, however, needs to be verified for three

dimensional systems. The Nusselt number for this case

using Berenson�s correlation and Klimenko�s correlation
is 2.112 and 1.7892, respectively.

In Fig. 6b we plot the quasi steady-state bubble re-

lease period ~s ¼ s=ts as a function of eW where it is seen

that ~s is essentially independent of eW . Bubble release

period for each case is calculated by measuring the peak

to peak distances of the corresponding curve in Fig. 5

and taking an average. While the resulting period repre-

sents the time between successive release of bubbles from

the same site for a single-mode simulation, it is the aver-

age of periods over all the sites for multimode simula-

tions, where each site has a different frequency.

Zuber [2] derived a relation for steady-state bubble

release period near the minimum heat flux by consider-

ing Kelvin–Helmholtz instability of a vertical liquid/

vapor interface when fluid velocities and gravity are set
to zero. Under these assumptions, the frequency is

n2 = rk3/(qv + ql) and the critical bubble period

sc = 2p/nc follows from inserting for kc = 2p/kc in the

expression for n2. The resulting correlation in nondimen-

sional form is ~smin;c ¼ 2p=
ffiffiffi
A

p
. Experimental measure-

ments of Hosler and Westwater [6] showed that

Zuber�s period correlated best with their data if they re-

placed kc with kd2 which results in smin,d2 = 33/4smin,c.

Zuber�s period must be modified when the wall heat flux

is different from q00min. Here, we take a more general ap-

proach and derive a relation for variations of ~s as a func-
tion of governing nondimensional parameters Ja, Gr,

and Pr. We note that the period is inversely proportional

to the wall heat flux; s 
 1=q00w. Therefore, for different

wall heat fluxes s1=s2 ¼ q00w;2=q
00
w;1. Since in our simula-

tions the wall superheat (rather than the heat flux) is

controlled, we should relate q00w to DT; s2/s1 = (h1DT1)/

(h2DT2). The heat transfer coefficient h is a function of

the thermophysical properties, gravitational accelera-

tion, as well as the wall superheat. Any change in one

of the above parameters will lead to a change in h. While

we work with fixed physical properties in most part of

the present study, in Section 3.5 we will change viscosi-

ties l and conductivities k of both phases to investigate

the effect of the Grashof number. Therefore, characteris-

tic length, time, and velocity (ls, ts, and us) will remain

unchanged throughout this study. Thus, we can nondi-

mensionalize the above relation in the following way

s2=ts
s1=ts

¼ h1ls=kv;1
h2ls=kv;2

� 	
kv;1
kv;2

� 	
cvDT 1=hfg
cvDT 2=hfg

� 	
:

Next, we substitute for hls/k in terms of Nu and

nondimensionalize k as Pe = qvlsus/k, where Pe is a

Peclet number. This leads to es2= es1 ¼ ðNu1=
Nu2ÞðPe2=Pe1ÞðJa1=Ja2Þ. Finally, we substitute for Nu

from Eq. (1) and replace Pe with Re Pr;es2= es1 ¼ ðGr1=Gr2Þ1=4ðPr2=Pr1Þ3=4ðJa1=Ja2Þ3=4ðRe2=Re1Þ.
This equation suggests that

~s 
 Re
Pr3

GrJa3

� 	1=4

; ð4Þ

which implies that ~s depends on one extra nondimen-

sional number compared to Nu. We note that using a

different correlation for Nu such as Klimenko�s correla-
tion would lead to a similar result but with different

exponents. Eq. (4) can be used to modify Zuber�s period
for wall superheats different from the minimum wall

superheat ~so ¼ ~sminðJamin=JaoÞ3=4, where the subscript o

stands for the operating condition.

The bubble release period was also determined ana-

lytically by Chang [8] who used hydrodynamic instabil-

ity in conjunction with a solution of a moving liquid/

vapor interface (similar to our third validation test in

[1]). The thickness of the vapor layer d was found (as

part of the solution) to be d ¼ 2
ffiffiffiffiffiffiffiffi
aeqt

p
, where aeq is an



Fig. 7. Comparison of the phase boundaries at et ¼ 27:89 for

multimode simulations at Jacob numbers 0.0640, 0.213, 0.427,

0.853, 2.132, and 10.66. The frames proceed from the top to the

bottom.
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equivalent thermal diffusivity. An approximate solution

of the energy jump condition resulted in aeq = kvDT/
2hfgqv. The stability criteria for the interface was used

to determine the critical thickness dc = (8p2lvaeq/gDq)1/3

at which the interface will break up. The bubble release

period, therefore, corresponds to this critical thickness,

i.e., s ¼ d2
c=4aeq. Inserting for dc and aeq in the expres-

sion for s and nondimensionalizing results in

~s ¼ ð2p4Þ1=3Re Pr

Gr2Ja

� 	1=3

: ð5Þ

Notice that the trend of variations of ~s with the gov-

erning nondimensional parameters is the same for Eqs.

(4) and (5).

Here, Zuber�s modified correlation results in

~so;c ¼ 32:83 and ~so;d2 ¼ 74:86, where ~so;c and ~so;d2 re-

fers to period based on kc and kd2, respectively. As

can be seen from Fig. 6b, the time-averaged numeri-

cal period falls between ~so;c and ~so;d2. Chang�s correla-

tion, on the other hand, results in ~s ¼ 7:465 which is

substantially different from our results and Zuber�s
prediction.

We also computed the Fourier transform of hNui over
the interval Dt = te � ti for the simulations in Fig. 5. The

Fourier transform showed a dominant frequency for

each run which corresponded to the bubble release

frequency of that run. A plot of the bubble release fre-

quency and the power as a function of eW showed that

these quantities are essentially independent of eW ; con-

firming the observation made about Fig. 6.

3.4. Effect of the wall superheat

An increase in the wall superheat results in an in-

crease in the Jacob number and a decrease in the Nusselt

number. For laminar film boiling, Chang [8] and Kli-

menko [4] predict that Nu 
 Ja�1/3, while Berenson [3]

and Hamil and Baumeister [13] predict that Nu 
 Ja�1/4.

However, Klimenko�s correlation also predict that Nu

will not change beyond Ja = 0.71. Experimental studies

(see, for example, [14]) show that as the Jacob number

increases, the vapor plume gets thicker and it may not

readily break into bubbles or break up at all. At suffi-

ciently high superheats, interaction between the jets is

observed.

To investigate the effect of the wall superheat on the

bubble spacing and evolution of the interface, we have

performed five multimode simulations at Jacob numbers

of 0.213, 0.427, 0.853, 2.132, and 10.664 with the same

initial conditions as used in the multimode run in Fig.

3. Although radiation effects are likely to be important

for the last run, we have not taken them into account.

The depth of the liquid and the height of the domain

for the last two runs were increased to accommodate fas-

ter bubble growth. In Fig. 7 we compare the phase
boundaries for these runs at a transient time. The figure

shows the formation of ten bubbles for each case, and it

is immediately obvious that the bubble spacing at this

stage is not affected by the change in the wall superheat.

Therefore, as has been argued by Zuber [2], the bubble

spacing is determined solely by hydrodynamics effects.

The figure shows that as the wall superheat increases

the bubble size and the width of the vapor jet increases.

In Fig. 8 we compare these simulations at late times. The

time for the first four frames is et ¼ 181:26 which is in the

quasi steady-state regime. The last two simulations are

at transient times et ¼ 44:62 and 31.37 and these two sys-

tems may not even have a quasi steady-state as a result

of rapid depletion of the liquid. While bubbles break off

periodically in the first run, the rest of the runs does not

show a sustained bubble break off. For 0.064 6

Ja 6 0.853, steady jets are formed which form bridges



Fig. 8. Comparison of the phase boundaries for multimode

simulations at Jacob numbers 0.0640, 0.213, 0.427, 0.853, 2.132,

and 10.66. The frame proceeds from the top to the bottom. The

time is 181.26 for the first four frames, 44.62 for the fifth frame,

and 31.37 for the last frame.
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between the vapor in the film and the vapor in the upper

layer once they coalesce with the top interface. Three

such bridges can be seen, for example, in the first frame.

Frame by frame investigations of the interface evolution

for the last two runs showed that some of the jets may

break in the middle, possibly due to a Kelvin–Helmholtz

instability. The investigations also showed interactions

between the jets. Comparison of this figure with Fig. 7

shows a decrease in the height of the liquid pool. This

is due to liquid evaporation. If any of these simulations

are continued indefinitely, eventually all the liquid will

evaporate.

To evaluate the effect of the the unit cell size (i.e, W),

we also performed a few simulations in smaller domains.

In agreement with our earlier observation, we observed

that the quasi steady-state Nusselt number was not dra-

matically affected by a change of the unit cell size.
In Fig. 9 we present some results for the statistically

steady-state. Each point on each curve corresponds to

an ensemble average over runs at different unit cells.

The first frame of the figure shows hNui as a function

of Ja along with the predictions of Berenson and Kli-

menko. Since in these simulations bubbles were released

mostly from the same location, we have reduced the lead

constant in Eq. (1) from 0.425 to 0.36 (as proposed by

Dhir et al. [7]). The figure shows a good agreement be-

tween the quasi steady-state Nusselt number and the

(modified) Berenson�s relation while the Klimenko�s cor-
relation underpredicts the results. It is seen that the rate

of change of hNui with Ja decreases at Jacob number lar-

ger than one. This is consistent with the Klimenko�s cor-
relation which suggest that hNui is independent of Ja for

Ja > 0.71. We note that Berenson�s correlation slightly

underpredicted Son and Dhir�s [11] results for film boil-

ing near critical pressure while Klimenko�s correlation

overpredicted their results by up to 52%. The second

frame of Fig. 9 shows ~s as a function of the Jacob num-

ber along with the (modified) Zuber�s predictions. The

numerical period is ensemble averaged over several cy-

cles for Ja 6 0.0640 where bubbles were continuously re-

leased. Since the vapor jets did not break up beyond

Ja = 0.0640, the bubble period for Ja > 0.0640 was esti-

mated by measuring the time it took for the formation of

the first set of bubbles. This, however, leads to an under-

prediction of the period for Ja > 0.0640, since the first

bubble release period is usually shorter than the quasi

steady-state one due to a large initial temperature gradi-

ent at the phase boundary in the vapor side. The figure

shows a decline in bubble release period as the Jacob

number is increased, in agreement with our earlier anal-

ysis where we showed that ~s 
 Ja�3=4. Chang�s correla-

tion, on the other hand, results in values that are

substantially different from our results and also predicts

~s 
 Ja�1=3.

A conservative estimate of the film thickness d (i.e.,

ignoring the phase change) can be obtained from an en-

ergy balance at the wall, �kvoT/oy = hDT, h being the

heat transfer coefficient. If the temperature gradient is

approximated by DT/d, the energy balance results in

d ’ kv/h and nondimensionalization leads to ~d ’ 1=Nu,
where ~d ¼ d=ls and Nu = hls/kv. While static models such

as Berenson�s assume d to be uniform, d is not uniform

and continuously evolves, as we have already observed.

Single-mode simulations showed that the film thickness

was initially minimum at the sides of the wall as a result

of the initial perturbation, but the minimum moved to-

ward the vapor dome during the bubble formation.

Fig. 9c shows ~d versus Ja for single-mode simulations.

The numerical values were obtained by measuring the

maximum and the minimum film thickness over equi-

interval times at steady-state and taking the ensemble

average of the results. The theoretical values were found

using ~dB ¼ 1=NuB and ~dK ¼ 1=NuK.



Fig. 9. (a) Quasi steady-state Nusselt number (b) bubble release period, (c) film thickness, and (d) nondimensional vapor velocity as a

function of the Jacob number.
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The vapor generation rate increases with increase in

the wall superheat. We can get an estimate of the

dependency of the vapor velocity on the wall superheat

using a simple energy balance at the phase boundary;

�kvoT/oyjv = qv(vv � vf)hfg, where vv ¼ �vv � �n and

vf ¼ �vf � �n. Here, �n is a unit normal velocity at the phase

boundary, vv is the vapor velocity at the phase boundary

and vf is the velocity of the phase boundary. If we

approximate �oT/oyjv ’ DT/d, then vv � vf ’ kvDT/
dqvhfg. Nondimensionalization leads to Rev ’ Ja=ðPr~dÞ,
where Rev = qv(vv � vf)ls/lv. Substitution for ~d in terms

of Nu using Eq. (1) results in Rev,B ’ 0.425(Ja3Gr/

Pr3)1/4. A similar relation can be found using Eq. (2).

The fourth frame of Fig. 9 shows the variation of Re

with Ja. The numerical results were obtained by com-

puting the temperature gradient at the phase boundary.

The figure shows a good agreement between the numer-

ical results and the analytical estimate based on Eq. (1).
3.5. Effect of the Grashof number

In the simulations presented so far, we used

Gr = 17.85 (instead of Gr = 36 · 104 for water at

p = 0.765pc) to avoid resolving an extremely thin vapor

film on the wall. To evaluate the effect of this parameter

on our results, we have run a multimode simulation at

Gr = 446 and a few single-mode simulations at higher

Gr. These simulations were done by reducing the viscos-

ity and the heat conductivity of both phases. As a result,

the characteristic length, time, and velocity scales were

not affected. Berenson�s and Klimenko�s correlations

predict Nu 
 Grn, where n = 1/4 and 1/3, respectively.

Since ~d ’ 1=Nu, then ~d 
 1=Grn. Therefore, an order

of magnitude increase in Gr leads to about 50% reduc-

tion in the film thickness. This translates to the necessity

for a twofold increase in the grid resolution. As a result,

as the Grashof number increases, using a uniform grid



A. Esmaeeli, G. Tryggvason / International Journal of Heat and Mass Transfer 47 (2004) 5463–5476 5475
becomes more and more expensive. While we simulated

the Gr = 446 case using a uniform grid of 256 grid points

per kd2, we used a nonuniform grid (where we clustered

the grids together in the film) to simulate a few single-

mode flows at Gr > 446. The grid resolutions outside

the film and in the horizontal direction were comparable

with the uniform grid resolution used earlier. All the

simulations reported in this section were done at

Ja = 0.064 which is the same as that of Fig. 3.

Fig. 10 shows a few frames from the multimode sim-

ulation in a eW ¼ 10 cell. Here, the first five frames are at

transient times and the last frame is at a quasi steady-

state time. It is seen that the average bubble spacing

for the first set of bubbles is close to what we observed
Fig. 10. Evolution of a multimode phase boundary at

Ja = 0.064. The initial interface consists of N = 30 random

waves in a 10kd2 · 2kd2 domain. The grid resolution is

2560 · 512. Here, except for Gr = 446, all the other nondimen-

sional numbers are the same as the corresponding ones in Fig.

3. The frames proceed from the top to the bottom and times are

10.46, 16.03, 20.22, 23, 34.86, and 76.
for the low Grashof number flows. The bubbles, how-

ever, are more deformed and rise faster. Compared to

the low Grashof number simulations, no steady jet is

formed, the vapor threads are shorter, and the vapor

film is also thinner.

In Fig. 11 we plot hNui as a function of Gr for a few

single-mode simulations along with Berenson�s and Kli-

menko�s correlations. While the agreement between Ber-

enson�s prediction and our result is good, Klimenko�s
correlation lead to an overprediction. We also measured

the quasi steady-state bubble release period for these

runs. Eq. (4) predicts ~s 
 Gr�1=4 at a fixed wall super-

heat. However, since in the simulations presented here

both Gr and Re are changed (Table 3), in Fig. 11b we

plot ~s=Re as a function of Gr to account for variations

of Re. Notice that although Ja is fixed for these simula-

tions, Jamin does not remain the same as Gr changes
Fig. 11. Evolution of quasi steady-state (a) Nusselt number and

(b) (scaled) bubble release period as a function of Gr. The

results correspond to single-mode simulations in kd2 · 2kd2
domains.



Table 3

Variation of Re and Jamin with Gr

Gr Re Jamin

17.85 2.173 0.4375

446 10.866 1.2793

1785 21.732 2.0308

104 51.743 3.6210

2 · 104 72.44 4.5316
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(Table 3). Thus, the analytical period has been modified

by ~so ¼ ~sminðJamin=JaoÞ3=4. It is seen that both the numer-

ical period and the modified Zuber�s period show a sim-

ilar trend and also the Zuber�s period based on kc
correlates better with our results.

To investigate the sensitivity of the results to the size

of the unit cell, we also ran another simulation at

Gr = 446 in a eW ¼ 2 cell. A plot of hNui and ~s as a func-

tion of eW showed that, as before, the results are essen-

tially independent of the unit cell size. In summary, we

believe that based on the simulations for two-dimen-

sional systems, the major observations made in this

study for the low Grashof number flows carry over for

higher Grashof numbers. This, however, needs to be ver-

ified by simulating three-dimensional systems.
4. Conclusion

Film boiling on horizontal walls was studied by di-

rect numerical simulation. Effect of the unit cell size

and the number of initial perturbation waves on the re-

sults was studied by simulating two- and three-dimen-

sional systems. The three-dimensional systems,

simulated in small domains and for a relatively short

periods, showed the possibility of bubble spacings less

than most unstable three-dimensional wave length kd3.
The two-dimensional systems, simulated in large do-

mains and for long times, showed a distribution of bub-

ble spacing. The evolution of the Nusselt number and

bubble release period as a function of unit cell size

showed that these quantities are essentially independent

of the unit cell size. Comparison of the statistically stea-

dy-state Nusselt numbers with the (modified) Berenson�s
prediction at different wall superheats showed a very

good agreement. The effect of Grashof number was

studied and it was shown that the observations made

for the low Grashof number flows, such as the average
bubble spacing and the effect of the unit cell size, may

still hold.
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